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Abstract

Inattention can lead to suboptimal investment in energy efficiency. We study whether elec-
tricity bill shocks draw attention to the benefits of home energy efficiency investments. Our
novel identification strategy builds on the fact that prolonged extreme weather events (which
raise electricity costs for many customers) fall within a single billing cycle for some customers
but are split across cycles for others. We find that households exposed to average sized bill
shocks are 22 percent more likely to invest in energy efficiency than households with normal
bills. This result suggests that inattention is indeed a factor in residential energy decisions and
utilities may be able to leverage bill shocks to promote efficiency investments.
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1 Introduction

Human beings have limited capacity for attention (Kahneman (2003); Miller (1956)). We ac-

tively attend to the most urgent or important decisions in our lives, while typically leaving the

rest to heuristics or habits. This has implications for societal welfare. When ignored decisions

have external benefits or costs, understanding and remedying the source of inattention can

improve social welfare (Allcott et al. (2023)). This paper seeks evidence of inattention, and an

opportunity to overcome it, in the context of residential energy efficiency investments.

Energy efficiency continues to be a central element to climate change mitigation plans

worldwide (Cabeza et al. (2022)). However, the reality of energy efficiency has consistently

fallen far short of the aspiration, with a large and growing body of evidence showing that most

energy efficiency programs fail to yield energy reduction benefits that meet (or even approach)

expectations (Allcott and Greenstone (2017); Fowlie et al. (2018); Burlig et al. (2020); Chuang

et al. (2022)). Economists have sought to understand why energy efficiency programs tend to

underperform (Christensen et al. (2023); Boomhower and Davis (2020); Gilbert et al. (2022);

Zivin and Novan (2016)) so that we may be able to inform how to better target these programs

in the future. While the reasons for energy efficiency underperformance are many, this litera-

ture often returns to a common theme: consumers appear to be inattentive to energy efficiency

investment opportunities, even when they may be privately net-beneficial.

In this paper, we test the hypothesis that residential electricity customers exposed to exoge-

nous and large bill shocks subsequently invest more in home energy efficiency upgrades. The

intuition is that customers are inattentive to bills as long as they are within a normal range,

and independently or as a result, they are also inattentive to advantageous energy efficiency

investments. However, an abnormally large bill may “shock” a customer into shifting attention

towards their electricity consumption and energy efficiency investment opportunities.

Our empirical setting is a utility district in Connecticut, United Illuminating (UI), which

serves about 300,000 residential electricity customers. We observe household-level monthly

electricity bills with information on the usage and total billed amount for all customers for

years 2008-2017. During this period, like many utilities, UI had active energy efficiency pro-

grams that offered UI customers reduced prices on home audits and energy efficiency invest-

ments. Data on investments, including audits, are recorded at the household-day level and

we match these records to the billing data. We collect daily temperature data in the service

territory to be used as part of our empirical strategy. Our sample focuses on customers living

in single-family homes with prolonged (more than 3 years of) continuous service from UI. Our
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final sample comprises of 120,000 customers with 11.5 million monthly observations. At some

point during our sample, 19% of households make some energy efficiency investment through

our observed investment channel.

We develop a novel identification strategy to estimate the causal effect of bill shocks on

energy efficiency investments. The endogeneity concern in our setting is that electricity con-

sumption and the choice of durable good attributes are jointly determined by heterogeneous

consumer preferences. To address this, we implement an instrumental variables model based

on a combination of temperature extremes (heat waves and cold snaps) and idiosyncrasies of

billing patterns across customers. UI’s customers are split across 17 billing cycles that have

associated recurring billing months that start and end at different times for different groups,

spread relatively evenly throughout a given month. For example, the February bill for billing

cycle 1 may go from January 2 to February 1 while billing cycle 2 may go from January 5 to

February 4, and so on. Prolonged periods of abnormal heat or cold typically increase electricity

use, and while these periods will fall entirely within a single billing month for some customers,

the exact same weather event is split across two billing months for other customers by chance.

We define treatment households as those who experienced a single bill encompassing the sea-

sonal peak temperature event, whereas households that experienced the same peak tempera-

ture event split nearly evenly across two bills are control units. Treatment is our instrument for

the endogenous bill shock variable, which we define as percent deviation from the average bill

over the prior 12 months. The instrument is powerful, with F-statistics over 1,000 in all speci-

fications, and we show supporting evidence that the required identifying assumptions for an

instrumental variables strategy are satisfied in our setting. Through our identification strategy,

we are able to isolate the mechanism to the size of the bill itself, as opposed to changes in total

outlay for energy costs, as treatment and control households experience the same underlying

demand shock.

Results are consistent with our hypothesis. Households exposed to an average bill shock

are 22 percent more likely to invest in energy efficiency upgrades in the following six months

than those that are not, despite both groups being exposed to the same conditions. While

the relative change is large, the absolute change is small due to the low baseline levels of en-

ergy efficiency program participation among the population in a given period. This result is

robust to varying definitions of the peak weather event used to assign treatment, alternative

definitions of what qualifies as an investment, and alternative post-event investment window

lengths used to construct the main outcome variable. In an extension of our main findings, we
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estimate heterogeneous effects by season and find the effect is concentrated in investment re-

sponses to winter seasonal bill shocks. We propose that this is likely due both to the increased

salience of winter bill shocks in the region of study as well as home construction seasonality,

which is more active in the warmer summer months following a winter bill shock.

This paper makes three main contributions to the literature. First, our results contribute to

the literature on customer inattention and price salience by showing that large bills can draw

the attention of consumers and lead to future investment expenditures. Intermittent billing has

become a feature of many products in recent years, however bills which vary from period to

period as a function of usage are less common. Prior literature that has studied the effect of

“bill shocks” on customer behavior in the cell phone industry (Grubb and Osborne (2015)) and

health care (Hoagland et al. (2023)). The related literature on residential electricity, however, is

mixed with respect to whether customers are inattentive to their usage and prices. Sallee (2014)

presents a model in which rational inattention arises from costly information acquisition.1 In

our setting, customers are attentive to energy usage and prices, even if intermittently. This

result can be unified with rational inattention to the extent bill shocks overcome the costs of

acquiring information about usage and expenditures. Related to our work, Gilbert and Graff

Zivin (2014) shows that the arrival of electricity bills increases the salience of prices in the

short-run, with homeowner’s reducing usage in the weeks that follow. Sexton (2015) finds an

increase in usage when accounts move to automatic intermittent billing. Jessoe et al. (2014)

find that unexpected (and quasi-random) changes in electricity price tariffs appear to affect

consumer behavior in a manner that is consistent with intermittent attentiveness to electricity

prices. Our work also relates to the literature on price salience in demand for durable goods;

Myers (2019) and Houde and Myers (2021) show that customers are attentive to local electricity

prices when making high-value durable household investment decisions.

Second, our results suggest that an opportunity exists for electric utilities to target informa-

tion about energy efficiency programs to customers who have recently experienced bill shocks.

A large literature has documented the effect feedback and nudging can have on subsequent

energy consumption (Faruqui et al. (2010); Buckley (2020); Allcott and Kessler (2019); Houde

et al. (2013); Jessoe and Rapson (2014); Gilbert and Graff Zivin (2014)). The information is

readily available and the cost for firms to notify customers is small. Demand reduction and

demand response are key features of reaching the energy efficiency goals of decarbonization

policy. Our work contributes to the understanding of how existing business practices can play

1This is supported by a body of empirical work in the energy setting (Houde (2018); Allcott (2013); Allcott and
Rogers (2014); Davis and Metcalf (2016); Allcott and Taubinsky (2015); Allcott and Knittel (2019)).
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a role in reaching these goals.

Lastly, we make a methodological contribution to the literature through our novel identifi-

cation strategy based on weather and billing cycles. Our research design could relatively easily

be applied elsewhere to estimate causal effects of bill shocks. We have identified a source of

exogeneous variation that is common to settings where billing is intermittent, but costs are a

function of past demand and not fixed. These types of billing structures are common to utility

companies, residential natural gas, heating oil, and water. Similar billing structures are present

in cell phones, internet service, and health setting and could benefit from our methodology

using related first stage variation from sources other than weather.

The paper proceeds as follows. Section 2 reviews the empirical setting and describes the

data. Section 3 explains the empirical approach, the results of which are presented in Section

4. Section 5 concludes.

2 Data

We combine data from several sources to construct a panel of customer-level monthly elec-

tricity consumption, monthly electricity bill amount, and energy efficiency investments. The

primary data source comes from United Illuminating Company (UI), an electric utility com-

pany focused on retail transmission and distribution in southwestern Connecticut. The billing

dataset contains electricity usage and bill amounts at the customer billing-month level for

302,046 unique customers in the UI service territory for the years 2008 to 2017. Due to our

focus on durable investments, it is desirable to observe households with long occupancy dura-

tions. We restrict the dataset to customers who had continuous service at a particular address

with UI for at least three years between 2008 and 2017. We further restrict the sample to exclude

observations with implausibly low electricity usage (less than 10kWh total for the month).

We observe the meter read date and billing cycle for each customer-billing month (“billing

month”) combination. UI has created 17 distinct billing cycles into which customers are sorted

upon enrolling for service. All customers in a given billing cycle have the same billing period

and are billed on the same day. The different billing period end dates for the different cycles

are spread relatively evenly through each month. The billing cycle designation is a vestige of

the analog era when meters were read manually on-site by utility employees. Customers in a

given billing cycle thus reside in close geographic proximity. Figure 1 shows the distribution

of households across billing cycles, weighted by the number of seasons present in our sample.

We match the billing data to a dataset of energy efficiency (EE) investments that was made
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Figure 1: Density of Households in Main Sample by Billing Cycle

Notes: Households included had continuous service with UI for at least 3 years during the
sample period of 2008-2017, were classified as a single-family residence, and are classified
as either treatment or control for at least one season.

available through the UI home energy audit and rebate program. These data contain a unique

customer identifier, the date of installation, and a category and sub-category for the invest-

ment. We observe each line-item investment made by the customer, with a single installation

visit often encompassing multiple investments from different categories.2 The most frequent

line-item investment category is “site visit”, which contains audits, tests, and survey items.

Most often, these administrative items are associated with other tangible investments, but for

a small number of observations, the only investment made is a site visit. Our empirical in-

vestigations focus primarily on investments that are most likely to have an impact on energy

efficiency, which leads us to drop investment activities that only contain a site visit from our

main specifications. We include results from the full sample as a robustness check, with nearly

identical results. We use the resulting data to identify which households make investments in

energy efficiency and when. We construct our main outcome variable from the item-level data

for each household: an indicator variable reflecting whether an investment was made during

the months following each season’s peak weather event.

We collect 2016 Connecticut tax assessor data for the UI service territory to identify single-

2Table A.1 reports the number of investments made during the sample period by investment category as reported
by UI. Table A.2 reports the sub-category for the site-visit category.
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family homes. Households that rent or live in multi-unit structures may lack the ability to make

alterations to their dwellings, either due to feasibility or contractual obligation. Even when

these households are exposed to high electricity bills, and may wish to invest in more efficient

home energy services, they may not have the incentives to do so, a relationship referred to as

the principal-agent problem (Gillingham et al. (2012), Davis (2012)). W merge to our billing and

investment data an identifier for single-family dwelling from the assessor data. The match rate

is 43%, and we drop all non-matching customers from our sample. We acknowledge that we are

likely discarding some owner-occupied units, but do not have the means for more precise cuts.3

Regardless, given that our sample is restricted to customers living in single-family homes that

have had prolonged service with UI, we feel confident that this sample is primarily owner-

occupied residences, and thus we have identified a sample in which energy investments are

most likely. However, to the extent that our sample still contains some renters, our estimates of

investment responses to bill shocks may be slightly attenuated. Lastly, include data from the

assessor on whether a housing unit uses electric heat, which we include in our data as a binary

indicator variable.

Lastly, we collect daily temperature data from the National Oceanic and Atmospheric Ad-

ministration (NOAA) for our entire sample timeframe. We use daily readings from the 10

weather stations located within the UI service territory to calculate average daily temperature

as the mean of daily high and low observations, as well as daily heating and cooling degree

days during the sample period. Daily heating degree days (HDD) and cooling degree days

(CDD) are defined as (65 – average daily temperature) in Fahrenheit, with positive values rep-

resenting CDD and negative values HDD (though both measures are recorded as positive val-

ues). As described in the methods section, we use these data as a treatment intensity measure

to identify periods of anomalous heat or cold events which can lead to large electricity bill

increases, the incidence of which will depend on the customer’s monthly billing cycle.

Table 1 presents simple summary statistics and data sources that describe our sample. Our

data consist of 120,030 unique customers and a total of 11,520,232 customer-billing month ob-

servations. The average customer is present for 8 years during our sample period, and the

average monthly electricity consumption is 818 kWh, yielding an average monthly bill of $182.

Over our entire sample period, 19.4% of households make at least one energy efficiency invest-

ment that we observe in our investment data set. On average, there are .26 energy efficiency

investments per household in the sample. Lastly, only 1% of customers have electric heat (the

3While we do not have estimates of the owner-occupied rate for the whole UI service territory, the owner-occupied
rate for New Haven, CT is 62%, according to the Census Bureau’s 2015 American Community Survey (ACS).
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Table 1: Summary Statistics

Statistic Source

Households 120,030 Utility Data

Monthly Observations 11,520,232 Utility Data

HHs that Ever Invest 23,330 Utility Data

Investments per HH 0.26 Utility Data
(0.62)

Electric Heating 0.01 Assessor Data

Years Present 8.03 Utility Data
(2.38)

Monthly KWh 818.02 Utility Data
(815.50)

Monthly Bill Amount 181.96 Utility Data
(117.74)

Notes: Utility data is sourced from customer-level data provided by
United Illuminating for the years 2008-2017. Assesor data is collected
from municipalities in the territory covered by United Illuminating.
Means are reported with standard errors below in parentheses.

bulk of customers use natural gas, propane or heating oil). In the following section, we detail

our identification strategy and how we use these data to build the panel for our analysis.

3 Methods

When people are generally inattentive about their energy use, as is widely believed in the

electricity demand setting, their attention can be drawn by an event such as an abnormal shock

to their household’s monthly electricity bill. Our main hypothesis is that investments in energy

efficiency are likely to be made in the period following such a shock. In our setting, a household

experiences a bill shock when their monthly electricity bill is high and outside of the range

of what is normal for them. Our empirical challenge is to causally assess how a household

responds to such a shock in the context of energy efficiency investments. We are interested in

the following relationship:

Investit = β1∆Billit + αi + δt + ϵit (1)

7



where ∆Billit is customer i’s percent change in electricity bill in month t relative to their average

bill over the previous twelve months, Investit is a binary variable equal to 1 if customer i invests

in energy efficiency during the six months following month t, αi are customer fixed effects,

which control for unobservable, time-invariant, customer-specific determinants of investment,

and δt are time fixed effects, which control for macro-level shocks to both bills and investments

in a given time period, such as weather or economic conditions. We hypothesize that β1 > 0

because anomalously large bills will draw attention to electricity usage and lead households to

invest in otherwise profitable energy efficiency measures.

While Equation (1) presents our intuition, estimating it via OLS would likely yield biased

estimates due the endogeneity of bill shocks. Electricity bills fluctuate for many reasons: sea-

sonality, adding household members, shifting to remote work, and home renovations, among

others. Some of these factors are likely correlated with underlying investment decisions, lead-

ing to omitted variable bias.

To address this endogeneity, we implement an instrumental variable (IV) strategy that is

based on simple intuition. When a heatwave (or cold snap) occurs, this will increase electricity

use and thus the amount paid on electricity bills. Within a given season, the exact timing of

these weather events is random. Due to the staggered nature of billing windows across cus-

tomers, when these shocks occur relative to a household’s billing cycle will determine the ex-

tent to which the “shock” will impact a household’s next bill. If a single bill cycle encompasses

the entire heatwave, then that customer’s bill will be anomalously large. However, a customer

on a different bill cycle that splits the heat wave evenly between two monthly bills will not

receive the same shock on a single bill, despite having been exposed to identical weather and

the identical increase in energy consumption. Since this relationship – when heat waves or cold

snaps occur relative to the household’s billing cycle – is as good as random, it forms the basis

of an identification strategy that can recover unbiased estimates of the causal effect.

We operationalize this intuition by first defining “winter” and “summer” seasons during

which the cold snaps and heat waves can occur. “Winter” is December 1 through March 31 and

“Summer” is June 1 through September 30. A “heat wave” of window length “W” is defined

as the W consecutive days during which time the average daily temperature is higher than

during any other group of W consecutive days in that season. “Cold snaps” are calculated

analogously for the coldest stretch of W days during a winter season. Our main results use a

window length of 20 days, which allows for relative balance between the number of treatment

and control households.
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We define the outcome variable of interest, Investit, as any energy investment made during

the six-month window that begins the day after the final billing window containing part of

the given season’s heatwave or coldwave has closed. This allows for some lag between the

weather event that caused the bill shock and the investment itself. This lag is likely to occur for

two main reasons. First, several weeks may pass between the time when the abnormal increase

in electricity usage occurs and the moment when the bill is received and paid. Secondly, after a

household decides to invest in an energy efficiency upgrade, some weeks or months may pass

before the upgrade is installed in their home.

As discussed in Section 2, utility customers are divided into 17 different billing cycles, each

with different start and stop dates staggered over the course of a calendar month. We define the

instrument, treatit = 1, if customer i is on a bill cycle such that the entirety of the heatwave or

coldwave is contained within a single billing month. For our main specification, we define con-

trol households as having at most 70 percent of the weather shock occurring in a single billing

month (i.e. the shock is split relatively evenly across two bills). Further, if a heatwave or cold-

wave is split across two bills, but the proportion on one bill ranges between 70 and 99%, then

that household is excluded from both treatment and control for that season. Figure 2 shows the

proportion of seasons each billing wave is considered treatment, control, or omitted during the

span of our sample. Importantly, every bill cycle is at some point part of the treatment group

and at some point part of the control group (and sometimes omitted). Since identification is

coming from all parts of the sample, our estimates are internally valid and this increases the

likelihood of being externally valid. Appendix Figure A.1 shows specifically which bill cycles

fall into which treatment group for each season in our sample.
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Figure 2: Treatment Status Across Seasons by Billing Cycle

Notes: This figure presents the proportion of seasons designated as treatment, control, or

omitted for each of the 17 billing cycles. Data is provided by United Illuminating for the

years 2008-2017.

Figure 3 presents a visual representation of the IV setup for the summer 2015 season using

a window length of W = 20 days. The y-axis represents the 17 different billing cycles, ranging

from 1 to 17. The x-axis represents time (in days), with the length of each horizontal line

representing the days that are included in a given bill for each billing cycle. For this season,

the 20 consecutive hottest days occurred between July 17 to August 5, with this time span

indicated by the vertical lines. Billing cycles depicted in dashed lines are the treated group,

as their billing dates span the entire heat wave. Billing cycles depicted in dash-dot lines are

the control group because the heatwave is relatively evenly between two billing months for

these customers. Finally, billing cycles depicted in solid lines are omitted from that season’s

observations. Above, we stated that Investit includes investments in a subsequent six-month

window. In Figure 3, the start of the six-month investment period would be August 28 and

would end 180 days later for all bill cycles.

We organize our data such that the unit of observation is a customer-season. For each

season, a customer can be treated, control, or omitted, but those classifications will change

from season to season. Empirically, we estimate how treatment impacts bill changes, and then

in turn, how do the exogenous changes in bills affect energy efficiency investments in the six
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Figure 3: Treatment Status by Billing Cycle During the 2015 Summer Heat Wave

Notes: This figure presents as an example the timing of the various billing cycles dur-
ing the Summer 2015 20-day peak temperature event, represented by the vertical bars.
Cycles 1 and 11-13 are omitted, cycles 2-10 are designated treated, and cycles 14-17 are
designated as control.

months following the shock.

Equations (2) and (3) represent the first and second stages of the IV model, respectively.

∆Billit = γ1treatit + αi + δt + νit (2)

Investit = β1 ˆ∆Billit + αi + δt + ϵit (3)

We additionally include a binary variable, PastInvestit, which is not displayed in Equations

(2) and (3) for simplicity, to account for whether the customer has invested in energy efficiency

in the preceding two years. This variable captures the effect that households recently investing

in energy upgrades are unlikely to invest again, regardless of subsequent exposure to a bill

shock.

The key assumption for identification of causal estimates using the IV estimator is the exclu-

sion restriction, requiring the instrument to only affect energy investments through its impact

on electricity bill amounts. This concern is nullified by the fact that treatment and control cus-

tomers both experience the same weather event, only differing on how their billing cycles align
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with the weather event, which is plausibly random after including temporal fixed effects. One

potential threat to identification is that bill cycles are not randomly assigned, instead they are

based on a property’s location, with entire neighborhoods being on the same cycle. However,

our estimates use within household variation through the inclusion of customer fixed effects

controlling for unobserved customer differences, and hence unobserved neighborhood differ-

ences. Further, as discussed above, every bill cycle is at some point treated and at some point

control (and sometimes omitted), so over time there is balance in which neighborhoods are

treated. From Figure 2, there are differences in the proportion of seasons spent in different

categories across cycles, however all cycles experience all three categories at least 15% of the

time. This means that a few bill cycles, which may be different in unobservable ways, are not

driving results.

Table 2: Summary Statistics

Treatment Control Difference

Observations 515,789 528,863

Delta Bill 0.17 0.14 0.06
(0.39) (0.35) (82.51)

Qualifying Investments 0.015 0.012 0.003
(0.120) (0.110) (11.940)

Prior Investments 0.026 0.027 -0.003
(0.158) (0.162) (-7.886)

Monthly KWh 1,017 960 58
(716) (639) (71.92)

Montly Bill Amount 226.19 213.45 11.98
(150.48) (134.63) (68.28)

CDD 225.93 242.47 -0.00
(37.42) (36.45) (-0.00)

HDD 821.32 823.35 -0.00
(86.27) (98.77) (-0.11)

Notes: Columns 1 and 2 report the mean and standard deviation for treatment and control observations in
our main IV sample. Differences shown in column 3 are calculated from a regression of the variable on a
binary indicator for treatment. As in our main regression specifications, we include household and season
fixed effects. The t-statistic for the coefficient is shown below in parentheses.

Table 2 presents summary statistics on the customer-season sample closely related to our

identification strategy. Columns 1 and 2 present means and standard deviations for the treated

and control groups, respectively. In Column 3, we report the estimated coefficient from a re-

gression of the respective variable on the treatment indicator, conditioning on household and

season fixed effects. We observe a statistically significant difference in the bill shock amount
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for the treatment group, ∆Bill, as well as a small increase, yet significant increase, in qualifying

investments in the post period. At the beginning of Section 4, we further study the reduced

form relationship between treatment and investments by estimating an event study model. As

expected, the treatment group has higher energy use and monthly bill amounts during the

treated seasons, compared to control households. For prior investments, we observe a small

negative coefficient on treatment households. While the difference is small, one potential ex-

planation is that control groups have previously made investments and that treatment results

in a “catching-up” effect. We take this difference into account in our regressions by condition-

ing on PastInvestit in our IV regressions.

4 Results

4.1 Reduced Form

We begin the discussion of our results by estimating the reduced form relationship of our in-

strument, the binary treatment indicator, with our dependent variable of interest, energy effi-

ciency investments. The hypothesis underlying our IV approach is that treatment has a positive

relationship with investments, and that treatment operates exclusively through its impact on

bill amounts. In Table 2 we presented the fixed effects regression estimate of the reduced form

relationship between treatment status and post-period investment rate. We can further test the

relationship using a standard event study design. The benefit of using an event study design

is twofold. We are able to test the first part of the hypothesis that treatment and post-period

investments are positively correlated, as well as characterize the dynamics of the relationship

over the duration of the post-period. Secondly, we are able to provide further evidence that

treatment is randomly assigned and orthogonal to pre-period investment decisions, charac-

terized by parallel trends in the event study for the months leading up to the peak weather

event.

We estimate the following equation:

Investit =
12

∑
k=−12

βk · Dikt + αi + δt + ϵit (4)

where Investit is defined differently than before, and is instead an indicator variable for

whether the household made an energy efficiency investment in month t. Dikt is a series of

event time dummy variables for the time, in months, before and after the month during which
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the weather shock occurred. As before, we include household and time fixed effects to account

for unobserved heterogeneity.

We construct a customer-month sample by selecting observations for the 12 months before

and after the peak weather event for the same treatment and control households as our main

IV seasonal panel. As in the IV sample, we omit observations associated with seasons where a

household does not qualify as either treatment or control. In light of the recent advancements

in the difference-in-differences literature concerning differential timing of treatment, we omit

from the analysis observations for a household if that household was treated in the previous

2 seasons. For example, if a household was treated in Winter of 2014, we would not include

observations associated with Summer or Winter 2015, if that household was classified as treat-

ment or control in those seasons. This creates a control group of households who are either

never-treated, not-yet treated, or sufficiently distanced from their prior treatment.

Figure 4: Effect of Treatment on Investments

Notes: Estimated coefficients and the 95% confidence intervals from an event study spec-
ification for the reduced-form effect of treatment on household energy efficiency invest-
ments are shown.

A plot of the estimated coefficients for the event time dummies is shown in Figure 4, with

event time t = −1 being the omitted category and representing the timing of the peak weather

event. Treatment is associated with a statistically significant increase in investments for each of

the five months that follow the weather event, before dissipating. This supports our choice of a
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six-month post-period investment window in the IV specification. For the nine months imme-

diately prior to the event, we estimate parallel pre-trends between the treatment and control

households. While the 9 months preceding exhibit parallel pre-trends, there are negative coef-

ficients estimated 10 and 11 months before the weather event. This could be a result of those

households which are most likely to have their attention drawn by the event are those which

underinvested in previous seasons.

The results from the event study model are consistent with our narrative that the large

bill shock event attracts attention as both treatment and control households experienced the

same weather event. In keeping with our IV approach, we believe that the impact of treatment

operates exclusively through the shock’s impact on the electricity bill.

4.2 Instrumental Variables

In order to establish a baseline, we first estimate the naive OLS specification shown in Equa-

tion (1). We report the coefficient estimates in Columns 1 and 2 of Table 3, controlling for prior

household energy efficiency investments and season-by-year fixed effects in both Columns 1

and 2, and adding household fixed effects in Column 2. The estimated coefficient on ∆Billit is

-0.001 in both specifications and statistically significant at the 10% level at least. These coeffi-

cients suggest that bill shocks are associated with a decrease in energy efficiency investments,

albeit a very small decrease, which is opposite of our hypothesis.

Previously discussed concerns regarding the endogeneity of the main independent vari-

able, ∆Billit, lead us to believe there may be substantial bias in the results from the OLS estima-

tion. A priori, the direction of bias was ambiguous. Given these results, one likely explanation

is that anticipated bill shocks, such as those from home renovations, birth of a child, or switch-

ing to work from home, do not lead to energy efficiency investments. To address the concerns

of omitted variables bias, we turn next to the results from our instrumental variables approach.

We present both first and second stage estimates from our main IV specification in Columns

3 and 4 of Table 3. Column 3 includes season-by-year fixed effects to account for temporal

shocks common to all households, such as exceptionally hot/cold seasons, transitory shocks

to fuel and energy costs, or changes in investment incentives. Column 4 adds the additional

household fixed effect, restricting estimation to variation within a household, over time, to ac-

count for inherent differences between households which are correlated with both electricity

consumption and the decision to invest. Both specifications control for whether the house-

hold has made a previous energy efficiency investment the prior two years, which is plausibly
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Table 3: Effect of Electricity Bill Shocks on Energy Efficiency Investments

OLS Estimates IV Estimates

(1) (2) (3) (4)

Estimated Effects

Delta Bill -0.001* -0.001*** 0.041*** 0.043***

(0.000) (0.000) (0.004) (0.004)
Past Investment 0.021*** -0.135*** 0.022*** -0.134***

(0.001) (0.001) (0.001) (0.001)

First Stage

Treatment 0.064*** 0.059***

(0.001) (0.001)
Past Investment -0.026*** -0.026***

(0.002) (0.002)

R2 0.003 0.156 0.229 0.334
F-stat 8,165 6,556
N 1,025,572 1,025,151 1,025,572 1,025,151

Season-Year FE Yes Yes Yes Yes
Household FE No Yes No Yes

Notes: Estimates for the effect of electricity bill shocks on subsequent household energy efficiency investments
are shown. The percent deviation in the seasonal electricity bill amount from the prior season (delta bill) is
instrumented for by treatment status. An indicator variable capturing whether the household made past
investments is included. Column 1 controls for season-year fixed effects while column 2 includes both season-
year fixed effects and a household fixed effect. The Cragg-Donald F-statistic from the first stage result is
reported in the bottom panel. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant
at 10 percent level.
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correlated with both contemporaneous energy consumption and future investment decisions.

For causal inference to be valid using an instrumental variables approach, the instrument

must be sufficiently correlated with the endogenous regressor to satisfy the relevance assump-

tion. We report the Cragg-Donald F-statistics for our first stage estimates, which both exceed

6,500, indicating a very strong statistical relationship between treatment status and ∆Billit. In-

terpretation of the first stage coefficients implies that treatment is associated with bill increases

that are 5.9 to 6.4 percentage points higher on average than the control group. Given that the

average bill in our sample is $182, this relative bill increase is equivalent to an increase of $10.71

to $11.65. Thus, bill cycle timing alone has a causal impact on bill increases.

Turning towards our second stage estimates in the top panel of Table 3, the estimated coef-

ficients on ∆Billit are now positive, ranging from 0.042 to 0.045, and are statistically significant

at the 1% level. The coefficient changes very little with the inclusion of household fixed effects,

which we attribute to the random nature of the shocks and the balance of shocks across bill

cycles. We treat Column 4 as our preferred specification. We can interpret the coefficient on

∆Billit as the percentage point increase in the probability of making an energy investment re-

sulting from a 100% increase in the customer’s electricity bill. In particular, in our preferred

specification, a 100% increase in the electricity bill results in a 4.5 percentage point increase in

the probability of making a green energy investment. Putting these numbers into perspective,

the first stage indicates treatment increases ∆Billit 5.9 percentage points on average, which

then would yield a 0.27 percentage point increase in investment. The baseline investment rate

from Table 2 is 1.2 percent, meaning that treatment increases investment 22.1%. These find-

ings clearly support the idea that heightened attention through bill shocks leads to meaningful

increases in energy efficiency investments.

While not the focus of our research, it is worth discussing how past investments in energy

efficiency influence future investments. We see the same patterns between Columns 1 and

2 and Columns 3 and 4. When household fixed effects are not included in the model, the

coefficient on PastInvestit is positive, but switches to a negative sign when household fixed

effects are included. We interpret this pattern as follows. There is a selection process into

which type of households invest in energy efficiency, and thus compared to other households,

those who have invested in the past are more likely to do so again. However, when household

fixed effects are included, only within-household variation is used to estimate coefficients and

that selection process is accounted for. In this case, the coefficient is negative because past

investments reduce opportunity or benefit of additional investments.
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Table 4 presents results that incorporate the two main variations on our main IV specifica-

tion: heterogeneity in treatment by CDD/HDD and heterogeneity in the effect of bill shocks

by season. Columns 1 and 2 show results for summer seasons and Columns 3 and 4 show

results for winter seasons. Columns 1 and 3 use the preferred specification from Table 2, and

Columns 2 and 4 add the additional interaction term treatit*(C|H)DDt to first stage instru-

ments.4 The reported first stage coefficients continue to satisfy the relevance assumption nec-

essary for identification of the IV estimator with the Cragg-Donald F-statistic indicating a very

strong relationship between our instruments and the endogenous variable in all specifications.

We also see the first-stage relationship between the instruments and ∆Billit is in the expected

direction, with both the binary treatment variable and the interaction term between treatment

and CDD/HDD being associated with higher bill shocks, on average. Further, we find that

peak weather events in the summer are associated with higher bill shocks than those from

winter for treatment households compared to that season’s control group.

Table 4: Effect of electricity Bill Shocks on Energy Efficiency Investments

Summer Winter
Estimated Effects

Delta Bill -0.010** -0.002 0.194*** 0.167***

(0.004) (0.003) (0.013) (0.011)
First Stage

Treatment 0.092*** 0.100*** 0.032*** 0.032***

(0.001) (0.001) (0.001) (0.001)
Treatment x CDD or HDD 0.138*** 0.027***

(0.002) (0.001)
R2 0.634 0.638 0.566 0.567
F-stat 10,913 7,286 2,000 1,275
N 509,741 509,741 500,236 500,236
Sargan Statistic 18.48 27.13

Notes: IV estimates for the effect of electricity bill shocks on future household energy efficiency investments
broken out by season are shown. The percent deviation in the seasonal electricity bill amount from the prior
season (delta bill) is instrumented for by treatment status in columns 1 and 3, and by treatment status and
its interaction with Cooling Degree Days or Heating Degree Days in columns 2 and 4. CDD and HDD are
demeaned. An indicator variable capturing whether the household made past investments is included as a
control variable. All models include season by year fixed effects and a household fixed effect. *** = significant
at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Examining the second stage coefficients, we see that the energy investment response is

entirely concentrated with those customers that received a bill shock from a winter peak event.

The coefficients on ∆Billit for winter are 0.194 and 0.167 and are highly statistically significant.

4CDD and HDD are demeaned so that the coefficient on the interaction term with treat is the average effect of
treatment at the average CDD or HDD level.
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In contrast, the coefficients for summer are actually negative, but very small in magnitude.

Focusing on Column 4, the coefficient on ∆Billit implies that a 100% increase in a customer’s

electricity bill during the winter season is associated with a 17.6 percentage point increase in

the probability of investing.

We hypothesize two reasons why we could expect to see different responses across seasons

in our setting. First, it is possible that consumers are more sensitive to shocks during win-

ter months and more likely to react to shocks during this period. Given that our data is from

households in Connecticut, the more notable harsh winter climate may make these shocks more

salient, leading to this phenomenon of a difference in investment rates by season. If customers

are more likely to assume that peak winter events will recur, while peak summer events may

in fact just be anomalies, then we would observe the results seen in our estimates. Secondly,

we capture investments made during the six-month window following the peak temperature

event, which for winter, typically occurs in late February and early March. This leads to an in-

vestment window running from March through September. For the summer window, the peak

events all occur in August, except for 2009, yielding investment windows spanning from Au-

gust to February. Households are traditionally much more likely to make house renovations

and improvements during the summer months. Private residential construction spending is

highly cyclical in nature with summer months having on average 30% higher spending com-

pared to winter months. With construction at its highest when the peak weather event occurs

in summer, when contractors are at their highest demand, it is reasonable to think that con-

sumers are unable to immediately react to the bill shock, and to the extent that their attention

to the bill shock declines over time, any inertia created dissipates before an energy investment

can be made.

4.3 Robustness

In addition to testing the robustness of our results to the inclusion of various controls, we next

explore the robustness of our key findings to the major sample selection criteria made: the

peak weather event 20-day window length, the 6-month investment period length, and the

exclusion of administrative category only investments.

We first look at the robustness of the main results to the choice of window length. Too short

of a window length means our designation of treatment is unlikely to lead to a meaningful

shock to electricity bills in addition to limiting the number of good control billing waves by

construction. Too long of a window length can smooth over peak weather events that cause
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reasonably large shocks to electricity bills, as well as limits the number of billing waves that

can be designated treatment (since by definition a treatment billing wave must encompass all

the window on one bill). In Figure 5, we vary the window length from 10 to 25 days along the

x-axis and report the coefficient on ∆Billit from the second stage estimation of our preferred IV

specification along with the coefficient’s 95% confidence interval. Excluding the extreme ends

of the window length distribution, our estimates are robust to changes in the window length.

Specifically, we see near identical results for windows of length 15-20 days. In Appendix Figure

A.3, we report estimates for the specifications that allow for heterogeneous responses by winter

and summer seasons, and results suggest qualitatively similar conclusions as those seen in

Table 4 across the spectrum of window length.

Figure 5: Coefficient Plot by Window Length

Notes: This figure plots the estimated second stage coefficient from the IV regression of
investments on delta bill and the 95% confidence interval, varying the peak weather event
window definition used to designate treatment and control groups from 10 to 25 days.

Next, in Table 5, we test the robustness of our results to the other two main sample selection

criteria, investment period and investment type. Our main results from Column 4 of Table 3

are replicated in Column 1 of Table 5 for ease of reference. First, we add back in investments

which were classified as administrative only to our main specification in Column 2. These

results are nearly identical. As such, in the next two columns we revert to excluding adminis-

trative only investments. Next, we examine how results change when the investment period
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length, which is used in the construction of our outcome variable, is changed to 3 months or

9 months, which appear in Columns 3 and 4, respectively.5 For an investment period of three

months, the estimated coefficient is 0.028, and for an investment period of nine months, the es-

timated coefficient is 0.053. These results combined with the estimated coefficient of 0.045 for

an investment period of six months lead to three conclusions. First, we see that as the window

length increases, more investments are made in total, consistent with results from our earlier

event study results. Secondly, the main results cannot be explained by the treatment group

simply making investments sooner than the control group, with control group catching up as

treatment group demand is satisfied. Thirdly, we see diminishing additional effects the longer

we extend the window. The diminishing incremental change in the effect makes sense because

as time goes on the attention focused on electricity dissipates.

Table 5: Effect of Electricity Bill Shocks on Energy Efficiency Investments

(1) (2) (3) (4)
Second Stage Estimates

Delta Bill 0.043*** 0.043*** 0.028*** 0.048***

(0.004) (0.004) (0.003) (0.005)
Past Investment -0.134*** -0.131*** -0.061*** -0.164***

(0.001) (0.001) (0.001) (0.001)
N 1,025,151 1,025,151 1,025,151 1,025,151

Investment Period 6 Mo. 6 Mo. 3 Mo. 9 Mo.
Administrative Investments No Yes No No

Notes: IV estimates for the effect of electricity bill shocks on future household energy efficiency investments
broken out by season are shown. The percent deviation in the seasonal electricity bill amount from the prior
season (delta bill) is instrumented for by treatment status in all specifications. Column 1 replicates our main
results as shown in column two of table 3. Column 2 reports estimates including administrative only invest-
ments in the dependent variable, which are excluded from our main results. Results in Columns 3 and 4 report
results from changing the definition for the investment period to 3 months and 9 months, respectively, from
the baseline level of 6 months. The dependent variable in Columns 3 and 4 do not include administrative-only
investments. All models include season by year fixed effects and a household fixed effect and control for past
investments made by the household. *** = significant at 1 percent level, ** = significant at 5 percent level, * =
significant at 10 percent level.

5 Conclusion

Behavioral obstacles appear to be a major factor inhibiting investment in residential energy

efficiency upgrades. The limits of human capacity for attention point to the potential benefits

of capitalizing on circumstances that draw peoples’ focus to the costs of habits and inaction.

5We cap the investment length at 9 months in order to not contaminate the outcome variable with effects from the
following year’s peak weather event of the same season.
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This paper makes use of exogeneous variation in the impacts of extreme temperature events to

document one such circumstance, bill shocks. This work adds to the growing literature which

empirically documents price salience and customer attention in residential household energy

settings.

In this paper, we make use of the random timing of extreme high and low temperature

events during the year with respect to the timing of electricity billing periods across customers

to identify households that received anomalously large electricity bills. Given our design, we

can isolate the effect to the increase in the amount on the bill, as opposed to an effect of the

increase in household energy use, as both treatment and control households experienced the

same energy-use shock from the weather event, only differing in the amount of the high-use

period contained in a single billing month. This design, coupled with our rich data on house-

hold level energy efficiency investments, allows us to present novel causal estimates of impact

of billing shocks on subsequent investment activity in the months that follow.

Customers in our setting exhibit a willingness to invest in home energy efficiency upgrades

in the months after being exposed to the weather-induced bill shock. Households exposed to

the average bill shock amount are 22 percent more likely to invest than households that did not

receive a bill shock. This effect is largely concentrated to the peak cold temperature events that

occur in the winter, likely a function of both the study’s geographic location in Connecticut and

the cyclicality of the home construction industry. During this window of time, an opportunity

may exist for targeted outreach that makes use of the increased attention to encourage these

households to consider energy efficiency investments and inform them of the potential benefits.
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A Online Appendix

A.1 Figures

Figure A.1: Treatment Status by Billing Cycle and Season

Notes: This figure shows the treatment status for each of the 17 billing cycles across the
seasons of our sample period.
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Figure A.2: Billing Cycles During 2015 Summer Heat Wave by Treatment Status

(a) 10 Day (b) 15 Day

(c) 20 Day (d) 25 Day

Notes: This figure shows treament status across the 17 different billing cycles for the
2015 summer peak weather event. Each panel shows a different window length used to
designate the hottest consecutive days for the peak event.
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Figure A.3: Coefficient Plot by Window Length

(a) Summer (b) Winter

Notes: This figure reports the estimated second stage coefficient on delta bill using vari-
ous window lengths to designate the peak weather event. Results for summer and winter
seasons are estimated and reported separately.

Figure A.4: K-Density Plot for Delta Bill

(a) Summer (b) Winter

Notes: This figure reports the distribution of the delta bill variable for treatment and
control observations separately by winter and summer seasons using a k-density plot.
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Figure A.5: Treatment Status by Season for Event Study

Notes: This figure shows the count of households in the event study sample by treatment
status for each season used in the event study analysis.

28



A.2 Tables

Table A.1: Energy Efficiency Investments by Categories
Freq. Percent Cum.

Site visits: audits and inspections 288,144 41.99 41.99
HVAC 40,002 5.83 47.82
Custom Measures 20,511 2.99 50.81
Hot Water 121,293 17.68 68.49
Envelope 93,117 13.57 82.06
Incentive Bonus 1,172 0.17 82.23
Lights 120,847 17.61 99.84
Refrigeration 1,066 0.16 100.00
Total 686,152 100.00

Notes: The table reports investments made by customers through United
Illuminating.

Table A.2: Site Visits: Detailed Subcategories
Freq. Percent Cum.

ADJUSTMENT, OIL, ARRA 128 0.04 0.04
ADMINISTRATIVE ADJUSTMENT 378 0.13 0.18
APPLIANCE EVALUATION 24,172 8.39 8.56
DATA ENTRY FEE, TEMPORARY 3,043 1.06 9.62
HEALTH AND SAFETY 1,816 0.63 10.25
HES SITE VISIT 30,413 10.55 20.81
HESCORE W/ CORE SERVICES 9,035 3.14 23.94
HOME AUDIT 142,467 49.44 73.38
HVAC TESTS 36,342 12.61 86.00
INSULATION VERIFICATION VISIT 260 0.09 86.09
KILL-A-WATT METER 7,143 2.48 88.57
SITE VISIT 32,947 11.43 100.00
Total 288,144 100.00
Notes: The table reports the subcategories for investments made in the
Site visits: audits and inspections category.
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